Donnez une primitive des fonctions suivantes :
$$f(x)=\frac{-4x+15x^2}{\sqrt{-2x^2+5x^3}}$$
$$g(x)=\frac{-9x^2}{(-4-3x^3)^2}$$
$$h(x)=\frac{-6x^2}{-1-2x^3}$$
$$i(x)=(-4)(-5-4x)^5$$
$$j(x)=(6x)e^{-5+3x^2}$$
Réponses :
$$F(x)=2\sqrt{-2x^2+5x^3}$$
$$G(x)=\frac{-1}{1(-4-3x^3)^1}$$
$$H(x)=ln \vert -1-2x^3\vert$$
$$I(x)=\frac{1}{6}(-5-4x)^6$$
$$J(x)=e^{-5+3x^2}$$
|